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Abstract

The recently proposed option-critic architecture (Bacon,
Harb, and Precup 2017) provides a stochastic policy gra-
dient approach to hierarchical reinforcement learning.
Specifically, it provides a way to estimate the gradient of
the expected discounted return with respect to parame-
ters that define a finite number of temporally extended
actions, called options. In this paper we show how the
option-critic architecture can be extended to estimate
the natural gradient (Amari 1998) of the expected dis-
counted return. To this end, the central questions that
we consider in this paper are: 1) what is the definition
of the natural gradient in this context, 2) what is the
Fisher information matrix associated with an option’s
parameterized policy, 3) what is the Fisher information
matrix associated with an option’s parameterized termi-
nation function, and 4) how can a compatible function
approximation approach be leveraged to obtain natural
gradient estimates for both the parameterized policy
and parameterized termination functions of an option
with per-time-step time and space complexity linear in
the total number of parameters. Based on answers to
these questions we introduce the natural option critic
algorithm. Experimental results showcase improvement
over the vanilla gradient approach.

Introduction

Hierarchical reinforcement learning methods enable
agents to tackle challenging problems by identifying
reusable skills—temporally extended actions—that sim-
plify the task. For example, a robot agent that tries to
learn to play chess by reasoning solely at the level of
how much current to give to its actuators every 20ms
will struggle to correlate obtained rewards with their
true underlying cause. However, if this same agent first
learns skills to move its arm, grasp a chess piece, and
move a chess piece, then the task of learning to play
chess (leveraging these skills) becomes tractable. Several
mathematical frameworks for hierarchical reinforcement
learning have been proposed, including hierarchies of
machines (Parr and Russell 1998), MAXQ (Dietterich
2000), and the options framework (Sutton, Precup, and
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Singh 1999). However, none of these frameworks pro-
vides a practical mechanism for skill discovery : deter-
mining what skills will be useful for an agent to learn.
Although skill discovery methods have been proposed,
they tend to be heuristic in that they find skills that have
a property that intuitively might make for good skills for
some problems, but which do not follow directly from the
primary objective of optimizing the expected discounted
return (Machado, Bellemare, and Bowling 2017; Simsek
and Barto 2008; Thrun and Schwartz 1995; Konidaris
and Barto 2009).

The option-critic architecture (Bacon, Harb, and Pre-
cup 2017), stands out from other attempts at developing
a general framework for skill discovery in that it searches
for the skills that directly optimize the expected dis-
counted return. Specifically, the option critic uses the
aforementioned options framework, wherein a skill is
called an option, and it proposes parameterizing all
aspects of the option and then performing stochastic
gradient descent on the expected discounted return with
respect to these parameters. The key insight that en-
ables the option-critic architecture is a set of theorems
that give expressions for the gradient of the expected dis-
counted return with respect to the different parameters
of an option.

One limitation of the option critic is that it uses or-
dinary (stochastic) gradient descent. In this paper we
show how the option critic can be extended to use nat-
ural gradient descent (Amari 1998), which exploits the
underlying structure of the option-parameter space to
produce a more informed update direction. The primary
contributions of this work are theoretical: we define the
natural gradients associated with the option critic, de-
rive the Fisher information matrices associated with an
option’s parameterized policy and termination function,
and show how the natural gradients can be estimated
with per-time-step time and space complexity linear in
the total number of parameters. This is achieved by
means of compatible function approximations. We also
analyze the performance of natural gradient descent
based approach on various learning tasks.



Preliminaries and Notation
A reinforcement learning (RL) agent interacts with an
environment, modeled as a Markov decision process
(MDP), over a sequence of time steps t ∈ N≥0. A finite
MDP is a tuple (S,A, P,R, d0, γ). S is the finite set of
possible states of the environment. St is the state of the
environment at time t. A is the finite set of possible
actions the agent can take. At is the action taken by the
agent at time t. P : S ×A× S → [0, 1] is the transition
function: P (s, a, s′) = Pr(St+1=s′|St=s,At=a), for all
t. Meaning, P (s, a, s′) the probability of transitioning
to state s′ given the agent takes action a in state s. Rt
denotes the reward at time t. R is the reward function,
R : S ×A → R, where R(s, a) = E[Rt|St=a,At=a], i.e.,
the expected reward the agent receives given it took
action a in state s. We say that a process has ended
when the environment enters a terminal state, meaning
for a terminal state s, P (s, a, s′) = 0 and R(s, a) = 0
for all s′ ∈ S \ {s} and a ∈ A. The process ends after T
steps and we call T the horizon. We say the process is
infinite horizon when there does not exist a finite T . d0
is the initial state distribution, i.e., d0(s) = Pr(S0=s).
The parameter γ ∈ [0, 1] scales how the rewards are
discounted over time. When a terminal state is reached,
time is reset to t = 0 and consequently a new initial
state is sampled using d0.

A policy, π : S ×A → [0, 1], represents the agent’s
decision making system: π(s, a) = Pr(At=a|St=s).
Given a policy, π, and an MDP, (S,A, P,R, d0, γ), an
episode, H is a sequence of states of the environment,
actions taken by the agent, and the rewards observed
from the initial state, S0, to the terminal state, ST ,
i.e., H = (S0, A0, R0, S1, A1, R1, ..., ST , AT , RT ). We
also define the path that an agent takes to be a se-
quence of states and actions, i.e., a history without
rewards, X = (S0, A0, S1, A1, ..., ST , AT ). Path X is
a random variable from the set of all possible paths,
X . The return of an episode H is the discounted sum

of all rewards, g(H) =
∑T
t=0 γ

tRt. We call vπ the
value function for the policy π, vπ : S → R, where

vπ(s) = E[
∑T
t=0 γ

tRt|, S0=s, π]. We call qπ the action-
value function associated with policy π, qπ : S ×A → R,

where qπ(s, a) = E[
∑T
t=0 γ

tRt|S0=s,A0=a, π].

Policy Gradient Framework

The policy gradient framework (Sutton et al. 1999;
Konda and Tsitsiklis 2000) assumes the policy π,
parametrized by θ, is differentiable. The objective
function, ρ, is defined with respect to a start state

s0, ρ(θ) = E[
∑T
t=0 γ

tRt|d0, θ]. The agent learns by up-
dating the parameters θ approximately proportional to
the gradient ∂ρ/∂θ, i.e., θ ← α∂ρ/∂θ where α is the
learning rate (LR): a scalar hyper-parameter.

Option Critic framework

The options framework (Sutton, Precup, and Singh
1999) formalizes the notion of temporal abstractions
by introducing options. An option, o, from a set of

options, O, is a generalization of primitive actions. The
intra-option policy πo : S ×A → [0, 1] represents the
agent’s decision making while executing an option o:
πo(s, a) = Pr(At=a|St=s,Ot=o). Like primitive actions
the agent executes an option at a state St and the option
terminates at another St+τ , where τ is the duration for
which the agent is executing the option: ot. While in
the option o, from state St to St+τ , the agent follows
the policy πo. Option o terminates stochastically in
state s according to a distribution β. The framework
puts restrictions on where an option can be initiated by
defining an initiation state set, Io, for option o. The
option o is initiated in state s ∈ Io based on πO(s),
which is a policy over options defined as πO : S ×O →
[0, 1]. An initiation state set Io, an intra-option policy
πo and a termination function βo : S → [0, 1] comprise
an option o. It is commonly assumed that all options
are available everywhere and thereby we dispense with
the notion of an initiation set.

The option critic framework makes all the options
available everywhere, and introduces policy-gradient
theorems within the options framework. The option
active at time step t is Ot. The intra-option policies (πo)
and termination functions (βo) are represented using
differentiable functions parametrized by θ and ϑ, respec-
tively. The goal is to optimize the expected discounted
return starting at state s0 and option o0. We re-define
the objective function, ρ, for the option critic setting:
ρ(O, θ, ϑ, s, o) = E[

∑∞
t=0 γ

tRt|O, θ, ϑ, S0 = s,O0 = o].
Equations similar to those in the policy gradient frame-

work (Sutton et al. 1999) are manipulated to derive gradi-
ents of the objective with respect to θ and ϑ in the option-
critic framework. The analogous state value function is
vπO : S → R, where vπO (s) = E[

∑
t γ

tRt|S0=s]. vπO (s)
is the value of a state s, within the options framework,
with the option set O and the policy over options πO.
The option-value function is qπO : S × O → R, where
qπO(s, o) = E[

∑
t γ

tRt|S0=s,O0=o]. Here, qπO(s, o)
is the value of state s when option o is active with
the option set O. The state-option-action value func-
tion is qU : S × O × A → R, where qU (s, o, a) =
E[
∑
t γ

tRt|S0=s,O0=o,A0=a]. Here, qU (s, o, a) is the
value of executing action a in the context of state-option
pair (s, o). The option-value function upon arrival is u :
O × S → R, where u(o, s′) = E[

∑
t γ

tRt|S1=s′, O0=o].
Here, u(o, s′) is the value of option o being active upon
the agent entering state s′. Bacon, Harb, and Pre-
cup (2017) observe a consequence of the definitions:

u(o, s′) = (1− βo(s′))qπO (s′, o) + βo(s
′)vπO (s′).

The main results presented by Bacon, Harb, and Pre-
cup (2017) are the intra-option policy gradient theorem
and the termination gradient theorem. The gradient of
the expected discounted return with respect to θ and
initial condition (s0, o0) is:

∂qπO (s0, o0)

∂θ
=
∑
s,o

µO(s, o)
∑
a

∂πo(s, a, θ)

∂θ
qU (s, o, a),



where µO(s, o) is the discounted weighting of state-
option pair (s, o) along trajectories starting from (s0, o0)
defined by : µO(s, o) =

∑∞
t=0 γ

t Pr(St=s,Ot=o|s0, o0).
The gradient of the expected discounted return with
respect to ϑ and initial condition (s1, o0) is:

∂u(o0, s1)

∂ϑ
= −

∑
o,s′

µO(s′, o)
∂βo(s

′, ϑ)

∂ϑ
aO(s′, o),

where aO : S × O → R is the advantage function
over options such that aO(s′, o) = qπO(s′, o)− vπO(s′).
Here, µO(s′, o) is the discounted weighting of state
option pair (s′, o) from (s1, o0), i.e., according to a
Markov chain shifted by one time step, defined by:
µO(s′, o) =

∑∞
t=0 γ

t Pr(St+1=s′, Ot=o|s1, o0). The
agent learns by updating parameters θ and ϑ in the direc-
tion approximately proportional to ∂qO(s0, o0)/∂θ and
∂u(o0, s1)/∂ϑ, respectively. Meaning, it learns by updat-
ing θ ← αθ∂qπO(s0, o0)/∂θ and ϑ ← αϑ∂u(o0, s1)/∂ϑ,
where αθ and αϑ are the learning rates for θ and ϑ,
respectively.

Natural Actor Critic

Natural gradient descent (Amari 1998) exploits the un-
derlying structure of the parameter space when defining
the direction of steepest descent. It does so by defining
the inner product 〈x, y〉θ in the parameter space as:

〈x, y〉θ = xTGθy, (1)

where Gθ is called the metric tensor. Although the
choice of Gθ remains open under certain conditions
(Thomas et al. 2016) we choose the Fisher informa-
tion matrix, as is common practice. The fisher infor-
mation matrix distribution over random variable X,
parametrized by policy parameters θ, that lie on a
Reimannian manifold (Rao 1945; Amari 1985):

(Gθ)i,j = E
[
∂ ln Pr(X; θ)

∂θi

∂ ln Pr(X; θ)

∂θj

]
,

where the expectation is over the distribution Pr(X)
and (Gθ)i,j represents a matrix with its i, jth element
being the expression as defined on the right hand side —
we use this notation to represent a matrix throughout
the paper. Kakade (2001) makes the assumption that
every policy, π, is ergodic and irreducible, therefore it
has a well-defined stationary distribution for each state
s. Under this assumption, Kakade (2001) introduces
the use of natural gradient for optimizing the expected
reward over the parameters θ of policy π, as defined by
ρ(θ) =

∑
s,a d

π(s)π(s, a, θ)R(s, a). The natural gradient
for the objective function, ρ, is defined as:

∇̃ρ(θ) = G−1θ
∂ρ(θ)

∂θ
. (2)

The derivation of a closed form expression for Gθ for
the parameter space of policy π, parametrized by θ, is
non-trivial as demonstrated for the limiting matrix of
the infinite horizon problem in reinforcement learning

(Bagnell and Schneider 2003). For a weight vector w
let q̂w be an approximation of the state action value
function q(s, a), which has the form:

q̂w(s, a) = wT
∂ lnπ(s, a, θ)

∂θ
.

The mean squared error ε(w, θ), for a weight vector w
and a given policy parametrized by θ, is defined as:

ε(w, θ) =
∑
s,a

dπ(s)π(s, a, θ)(q̂w(s, a)− qπ(s, a))2,

where dπ(s) =
∑∞
t=0 γ

t Pr(St=s|π) is the discounted
weighting of state s in the infinite horizon problem. The
weights dπ(s) normalize to the stationary distribution for
state s under policy π in the undiscounted setting where
the MDP terminates at every time step t with probability
1−γ. Theorem 1 as introduced by Kakade (2001) states
that w̃ which minimizes the mean squared error, ε(w, θ),
is equal to the natural gradient as defined in (2).

Kakade (2001) also demonstrates how natural pol-
icy gradient performs under the re-scaling of parame-
ters. In addition to that, Kakade (2001) demonstrates
how the natural gradient weights the components of

∇̃ρ(θ) uniformly, instead of using dπ(s). We also point
out that the natural gradient is independent to local
re-parametrization of the model (Pascanu and Bengio
2013) and can be used in online learning (Degris, Pi-
larski, and Sutton 2012). Natural gradients for rein-
forcement learning (Peters and Schaal; Bhatnagar et
al. 2008; 2009; Degris, Pilarski, and Sutton 2012), as
well as more recent work in deep neural networks (Des-
jardins et al. 2015; Pascanu and Bengio 2013; Thomas,
Dann, and Brunskill 2018; Sun and Nielsen 2017) have
shown to be effective in learning.

The Option-Critic architecture uses vanilla gradient to
learn temporal abstraction and internal policies, which
can be less data efficient compared to the natural gradi-
ent (Amari 1998). The natural gradient also overcomes
the difficulty posed by the plateau phenomena (Amari
2016). We derive the metric tensors for the parameters
in the option-critic architecture. Computing the com-
plete Fisher information matrix or is expensive. We
use a block-diagonal estimate of the Fisher information
matrix as has been applied in the past to reinforcement
learning (Thomas 2011) and to neural networks (Roux,
Manzagol, and Bengio 2008; Kurita 1992; Martens 2010;
Pascanu and Bengio 2013; Martens and Grosse 2015).
Specifically, we estimate Gθ and Gϑ separately, where θ
and ϑ are the parameters of of the intra-option policy
and the option termination function. These are then
combined into a (|θ|+ |ϑ|)× (|θ|+ |ϑ|) sized estimate of
the complete Fisher information matrix of the parameter
space, where |θ|, |ϑ| represent the size of vectors.

We also provide theoretical justification for the re-
sulting algorithm inspired from the incremental natural
actor critic algorithm (Bhatnagar et al. 2007) (INAC)
and its extension to include eligibility traces (Morimura,
Uchibe, and Kenji 2005; Thomas 2014).



Start State Fisher Information Matrix
Over Intra-Option Path Manifold

We define path X in the options framework for the
infinite horizon problem as the sequence of state-option-
action tuples: X = (S0, O0, A0, S1, O1, A1, ...). We use
X to denote the set of all paths. We introduce the
function g : X → R called the expected return over path,

where g(x) = E[
∑T
t=0 γ

tRt|x] is the expected return
given the path x. The goal in a reinforcement learning
problem, in the context of the option-critic architecture,
is to maximize the discounted return, ρ(O, θ, ϑ, s0, o0).
The goal can be re-written as maximizing J(θ, s0, o0) =∑

Pr(x; θ)g(x). Where the summation is over all x ∈ X
starting from (s0, o0) and the intra-option policies are
parametrized by θ. To optimize the objective J , we
define it over a Riemannian space Θ, with θ ∈ Θ. In
the Riemannian space the inner product is defined as
in (1). The direction of steepest ascent of J(θ) in the
Riemannian space, Θ, is given by G−1θ ∂J(θ)/∂θ (Amari
1998), (see equation (2)).

In this section we use ∂i to denote ∂/∂θi and use
〈f(X)〉Pr(X) to indicate the expected value of f with
respect to distribution Pr(X). We obtain an alternative
form of the Fisher information matrix which is a well
know result (DeGroot 1970) (for details see appendix):

(Gθ)i,j = −〈∂i∂j ln Pr(X; θ)〉Pr(X;θ). (3)

Fisher Information Matrix Over
Intra-Option Path Manifold

In Theorem 1 we show that the Fisher information
matrix over the paths, X, truncated to terminate at time
step T converges as T → ∞ to the Fisher information
matrix over the intra-option policies, πo. This gives an
expression for Fisher information matrix over the set
of paths, X , and simplifies computation of the natural
gradient when maximizing the objective J(θ, s0, o0). We
use GTθ to indicate the T -step finite horizon Fisher
information matrix, meaning the Fisher information
matrix if the problem were to be reduced to terminate
at step T . We normalize the metric by the total length of
path T (Bagnell and Schneider 2003) to get a convergent
metric.

Theorem 1 (Infinite Horizon Intra-Option Matrix).
Let GTθ be the T -step finite horizon Fisher information
matrix and 〈Gθ〉µO(s,o) be the Fisher information matrix
of intra-option policies under a stationary distribution
of states, actions and options: πo(s, a, θ)µO(s, o). Then:

lim
T→∞

1

T
GTθ = 〈Gθ〉µO(s,o).

Proof. See the appendix (supplementary materials).

Compatible Function Approximation For
Intra-Option Path Manifold

We subtract the option-state value function, qπO , from
the state-option-action value function, qU , and treat it

as a baseline to reduce variance in the gradient esti-
mate of the expected discounted return. The baseline
can be a function of both state and action in special
circumstances, but none of those apply here (Thomas
and Brunskill 2017). So, we define the state-option-
action advantage function aU : S ×O ×A → R. Where
aU (s, o, a) = qU (s, o, a) − qO(s, o) is the advantage of
the agent taking action a in state s in the context of
option o. Here, aU is approximated by some compatible
function approximator fπoη . For vector η and parameters
θ we define:

fπoη (s, a) = ηT
(
∂ ln(πo(s, a, θ))

∂θ

)
. (4)

The η̃ that is a local minima of the squared error ε(η, θ):

ε(η, θ) =
∑
s,o,a

µO(s, o)πo(s, a, θ)(f
πo
η (s, a)−aU (s, o, a))2.

is equal to the natural gradient of the objective, ρ, with
respect to ϑ (the complete derivation is in the appendix):

∇̃θqπO (s0, o0) = G−1θ
∂qπO (s0, o0)

∂θ
= η̃.

Thus, for a sensible (Kakade 2001) function approxi-
mation, as in (4), in the option-critic framework the
natural gradient of the expected discounted return is
the weights of linear function approximation.

Start State Fisher Information Matrix
Over State-Option Transition Path

Manifold

We derive the Fisher information matrix for the param-
eters ϑ over the state-option transitions path manifold.
We define X ′ as a path for state-option transitions in
the option-critic architecture. More specifically, we de-
fine X ′ = (O0, S1, O1, S2, O2, S3, ...) to be path tuples
of state option pairs shifted by one time step. We
define X ′ to be the set of all state-option transition
paths. Similar to the previous section, we define the ex-
pected return over state-option transitions g′ : X ′ → R,

where g′(x′) = E[
∑T
t=0 γ

tRt|x′] is the expected return
given state-option transitions path x′. The goal can be
re-written to maximize J ′(ϑ, s1, o0) =

∑
Pr(x′)g′(x′).

Where the summation is over all x′ ∈ X ′ starting from
(s1, o0) and terminations are parametrized by ϑ. To op-
timize J ′ we define it over a Reimannian space Θ′ with
ϑ ∈ Θ′ and the inner product defined as in (1), similar
to previous section. The direction of steepest ascent in
the Reimannian space, Θ′, is the natural gradient.

In this section, we use ∂i to denote ∂/∂ϑi and use
〈f(X ′)〉Pr(X′) to indicate the expected value of f(X ′)
with respect to the distribution Pr(X ′). Equation (3)
implies that the Fisher information matrix can be writ-
ten as:

(Gϑ)i,j = −〈∂i∂j ln Pr(X ′;ϑ)〉Pr(X′;ϑ).



Fisher Information Matrix Over
State-Option Transition Path Manifold

In Theorem 2 we show that the Fisher information
matrix over the paths, X ′, truncated to terminate at
time step T converges as T → ∞ to an expression in
terms of the terminations and the policy over options
over the stationary distribution of states and options.
This gives an expression for Fisher information Matrix
over set of paths, X ′, and simplifies computation of
the natural gradient when maximizing the objective
J ′(ϑ, s1, o0).

Theorem 2 (Infinite Horizon State-Option Transition
Matrix). Let GTϑ be the T -step finite horizon Fisher
information matrix and µO(s′, o) is the stationary dis-
tribution of state-option pairs s′, o. Then:(

lim
T→∞

1

T
GTϑ

)
i,j

= −〈∂i lnβo(s
′, ϑ)

∂j ln(1− βo(s′, ϑ) + βo(s
′, ϑ)πO(s′, o))〉µO(s′,o).

Proof. See appendix (supplementary materials).

Compatible Function Approximation For
State-Option Transition Path Manifold

We define the advantage function of continued option
as: a′O : S × O → R. Where a′O(s′, o) = u(o, s′) −
qπO (s′, o) is the advantage of the option o being active
while exiting s′ given that option o is active when the
agent enters s′. We consider terminations improvement
when a′O is approximated by some compatible function
approximator hβoϕ . For vector ϕ and parameters ϑ we
define:

hβoϕ (s′) = ϕT
∂ ln(1− βo(s′, ϑ) + πO(s′, o)βo(s

′, ϑ)))

∂ϑ
.

(5)
We define the squared error ε(ϕ, ϑ) associated with vec-
tor ϕ as:

ε(ϕ, ϑ) =
∑
s′,o

µO(s′, o)L(Ot+1=o|Ot=o, St+1=s′;ϑ)

(hβoϕ (s′)− a′O(s′, o))2,

where L(Ot+1=o|Ot=o, St+1 = s′;ϑ) is the likelihood
ratio of option o being active while exiting s′ given that
option o is active when the agent enters s′. It is defined
as follows:

L(Ot+1=o|Ot=o, St+1 = s′;ϑ)

=
Pr(Ot+1=o|Ot=o, St+1 = s′;ϑ)

Pr(Ot+1 6=o|Ot=o, St+1 = s′;ϑ)

=
β′o(s

′, ϑ)

1− β′o(s′, ϑ)
.

We assume, throughout the paper, that the denominator
is not 0. The ϕ̃ that is a local minima of ε(ϕ) satisfies
(the complete derivation is in the appendix):

∇̃ϑu(o0, s1) = G−1ϑ
∂u(o0, s1)

∂ϑ
= −ϕ̃.

Therefore, for an approximation of the continued state-
option value function, as in (5), the natural gradient of
the expected discounted return is the negative weights
of the linear function approximation.

Incremental Natural Option Critic
Algorithm

We introduce algorithms inspired from the incremental
natural actor critic introduced by Degris, Pilarski, and
Sutton (2012), who in turn built on the theoretical work
of Bhatnagar et al. (2007). The algorithm learns the
parameters for approximations of state-option-action
advantage function, aU , and the advantage function of
continued option, a′O, incrementally by taking steps in
the direction of reducing the error ε(η, θ) and ε(ϕ, ϑ).
It does stochastic gradient descent using the gradients
∂ε(η, ϑ)/∂η and ∂ε(ϕ, ϑ)/∂ϕ. Learning the parameters
η and ϕ leads to natural gradient based updates for θ
and ϑ. We introduce hyper parameters αη, αϕ and λ,
which are the learning rate for η, the learning rate for
ϕ and the λ the eligibility trace parameter of both η
and ϕ, respectively. The algorithm learns the policy
over options, πO, using intra-option Q-learning (Sutton,
Precup, and Singh 1999) as in previous work (Bacon,
Harb, and Precup 2017).

The algorithm uses TD-error style updates to learn
θ and ϑ. Analogous to the consistent estimates used
by Bhatnagar et al. (2007), we state that a consistent
estimate of the state-option value function, q̂πO , satis-
fies E[q̂πO(st, ot)|st, ot, πO, πot , βot ] = qπO . Similarly, a
consistent estimate of the value function upon arrival, û,
satisfies E[û(ot, st+1)|ot, st+1, πO, πot , βot ] = u(ot, st+1).
We define the TD-error for the intra-option policies at
time step t to be δUt = rt + γû(ot, st+1)− q̂πO (st, ot).

A consistent estimate of the state value function, v̂πO ,
satisfies E[v̂πO (st)|st, πO, πot , βot ] = vπO (st). We define
the TD-error at time step t for the terminations to be
δOt = rt + γv̂πO (st+1)− v̂πO (st). We provide Lemmas 1
and 2 to show that δUt and δOt are consistent estimates
of aU and aO.

Lemma 1. Given intra-option policies, πo for all o ∈ O,
policy over options, πO, and terminations, βo for all
o ∈ O, then:

E[δUt |st, at, ot, πot , πO, βot ] = aU (st, ot, at).

Lemma 2. Under the precondition ot = ot−1 and given
intra-option policies, πo for all o ∈ O, policy over op-
tions, πO, and terminations, βo for all o ∈ O, then:

E[δOt |st, ot, ot=ot−1, πot , πO] = aO(st, ot−1).

The proofs are in the appendix (supplementary mate-
rials). Using these lemmas and theorems we introduce
algorithm 1 (INOC). We provide details on how we
arrive at the updates to parameters η and ϕ in the ap-
pendix. The precondition ot = ot−1 might lead to fewer
updates to the parameters of the terminations. The
options evaluation part in the algorithm is the same as
in previous work (Bacon, Harb, and Precup 2017).



Algorithm 1 Incremental Natural Option-Critic Algo-
rithm (INOC)

1: s0 ← d0 and choose o using πO.
2: while Not in terminal state do
3: Select action at as per πot
4: Take action at observe st+1, rt

5: eη ← λeη +
∂ lnπot (st,at,θ)

∂θ

6: δUt ← rt + γu(ot, st+1)− qπO (st, ot)

7: temp =
∂ lnπot (st,at,θ)

∂θ

8: η ← η + αηδ
U
t eη − αηtemp× tempT × η

9: θ ← θ + αθ
η
||η||2

10: if ot is the same as ot−1 then

11: eϕ ← λeϕ +
∂ ln βot−1

(st,ϑ)

∂ϑ

12: δOt ← rt + γvπO (st+1)− γvπO (st)

13: temp =
∂ ln βot−1

(st,ϑ)

∂ϑ

14: ϕ ← ϕ + αϕβot−1
(st, ϑ)δOt eϕ + αϕtemp ×

tempT × ϕ
15: ϑ← ϑ− αϑ ϕ

||ϕ||2
16: end if
17: if should terminate ot in st+1 according to βot

then
18: Choose ot+1 according to πO and reset

η, ϕ, eη, eϕ
19: end if
20: end while

Figure 1: Simple deterministic MDP of two states and two
actions

Experiments

We look at the performance of natural option critic
in three different types of domains: a simple 2 state
MDP, one with linear state representations and one with
neural networks for state representations, and compare
it to option critic. In all the cases we use sigmoid
terminations and linear-softmax intra-option policies, as
in previous work (Bacon, Harb, and Precup 2017).

MDP Setup: We design an MDP to demonstrate
the uniform weighting of the components of the natural

termination gradient, ∇̃θqπO (s0, o0), as opposed to using
µO(s, o). Note that the effectiveness of the natural
policy gradient has been demonstrated sufficiently in
past work (Kakade 2001; Bagnell and Schneider 2003;
Degris, Pilarski, and Sutton 2012). We define a simple 2
state MDP as in Figure 1. The initial state distribution
is d0(s1) = 0.8 and d0(s2) = 0.2. The transitions are
deterministic. The reward for self loops into s1 and s2
are 1 and 2, respectively. The episode terminates after

Figure 2: Average reward for INOC reaches the maxima
while that of OC is stuck in a plateau. Results averaged over
200 runs of 2000 episodes.

30 steps. We use an ε-greedy policy over options, πO.
We consider a scenario with two options, o1 and o2,

each of which has probability 0.9 for actions a1 and
a2, respectively, regardless of the state. This gives us
options as abstractions over individual actions. We
initialize the terminations, βo, and option value function,
qπO(s, o) such that they are biased towards the greedy
action, a1, in state s1 via the selection of option o1.
Specifically, we set βo1(s1) = 0.1 and βo1(s2) = 0.1, this
way the setup is biased towards higher probability of
µO(s1, o1). This presents the agent with the challenge
of learning the more optimal action of transitioning to
state s2, despite the higher probability µ(s1, o1) and the
self loop reward of s1. We set the learning rate for the
intra-option policies, αθ, to be negligible as our goal is
to demonstrate the efficacy of the natural termination
gradient.

As can be seen from Figure 2, the natural option
critic converges to the optimal value, by overcoming the
plateau, for average reward much faster than the option
critic. The option critic is initially stuck in the greedy
self-loop action, this is due to the weighting by µO(s, o).
Whereas the natural option critic begins learning early
on and achieves the optimal average reward.

Four Rooms: The four rooms domain (Sutton,
Precup, and Singh 1999) is a particularly favorable case
for demonstrating the use of options. We use the same
number of options, 4, as in previous work (Bacon, Harb,
and Precup 2017). The result (Figure 3) indicates that
natural option critic converges faster.

Arcade Learning Environment:
We compare natural option-critic with the option

critic framework on the Arcade Learning Environment
(Bellemare et al. 2013). To showcase the improvement
over the option-critic architecture we use the same con-
figuration for all the layers as in previous work (Bacon,
Harb, and Precup 2017). Which in turn uses the same
configuration for the first 3 convolutional layers of the
network introduced by Mnih et al. (2013). The critic
network was trained, similar to previous work (Bacon,
Harb, and Precup 2017), using experience replay (Mnih



Figure 3: Four rooms with
αθ = αϑ = 0.0025, αη = 0.5,
αϕ = 0.75, λ = 0.5 and critic
LR 0.5, averaged over 350 runs

(a) Asterisk (b) Seaquest (c) Zaxxon

Figure 4: Moving average of 10 returns for a single trial for Arcade learning Environment,
with αθ = αϑ = 0.0025, αη = αϕ = 0.75, and λ = 0.5

et al. 2013) and RMSProp.
As in previous work (Bacon, Harb, and Precup 2017),

we apply the regularizer prescribed by Mnih et al. (2016)
to penalize low entropy policies. We use an on-policy
estimate of the policy over options, πO, which is used
in the computation of the natural gradient with respect
to the termination parameters.

We compare the two approaches, option critic and
natural option critic, by evaluating them for the games
Asterisk, Seaquest, and Zaxxon (Bacon, Harb, and Pre-
cup 2017). For comparison we run training over same
number of frames per epoch as done by Bacon, Harb,
and Precup (2017), running the same number of trial
and use the same number of options: 8. We demonstrate
the results in Figure 4. More importantly, we use the
same hyperparameters, for learning rates and entropy
regularization, as in previous work to merit a fair com-
parison. We obtain improvements on the option-critic
architecture (OC) for Asterisk and Zaxxon. We also
note that we were unable to reproduce the results for
Seaquest for option critic, but having given the same
set of hyperparameters we observe that option critic
performs better. We explain the issue with termination
updates, and it’s effect on the return, for Seaquest in
the appendix.

For Zaxxon and Asterisk we see that NOC breaks the
plateau much earlier than option critic. Note that the
value network, for approximating QU , is learned using
vanilla gradient.

Discussion
We have introduced a natural gradient based approach
for learning intra-option policies and terminations,
within the option-critic framework, which is linear in
the number of parameters. More importantly, we have
furnished instructive proofs on deriving the Fisher infor-
mation matrix over path manifolds and corresponding
function approximations based approach while reducing
mean squared errors. We have also introduced an algo-
rithm that uses consistent estimates of the advantage
functions and learn the natural gradient by learning co-
efficients of the corresponding linear function approxima-
tors. The results showcase performance improvements
on previous work. The proofs for finite horizon metrics
are very similar to the ones provided by Bagnell and

Schneider (2003). We also demonstrate the effectiveness
of natural option critic in three distinct domains.

As discussed by Thomas (2014) we can obtain a truly
unbiased estimate for our updates, but it may not be
practical (Thomas 2014). The limitations that apply to
the option-critic framework, except the use of vanilla
gradient, apply. We use a block diagonal estimate of
the Fisher information matrix. The complete Fisher
information matrix for the option-critic framework over
path manifolds is:

Gθ,ϑ =

[
Gθ 〈∂X∂θ

∂X
∂ϑ 〉

〈∂X∂ϑ
∂X
∂θ 〉 Gϑ

]
,

where Gθ and Gϑ are the Fisher information matrices
for intra-option path manifold and state-option transi-
tion manifold, respectively. The random variable X is
the path variable over state-option-action tuples. The
computation of the complete Fisher information matrix
suffers and its inverse is expensive and needs a compati-
ble function approximation based approach to obtain a
natural gradient estimate with space complexity linear
in number of parameters.

Although our approach has added benefits it is limited
by fewer updates of the termination policy. Work is
required to develop better estimates of the advantage
functions. More experimental work, e.g. applications to
other domains, can further help understand the efficacy
of natural gradients in the context of the option-critic
framework.
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Appendix

Here, we provide proofs for the theorems and lemmas
presented in the body of the paper and we also provide
derivations for the estimates for the natural gradient.
Despite these proofs being in the appendix due
to space constraint these are our major contri-
butions.



Alternate Form Of The Fisher Information
Matrix
We derive the following result, same as Bagnell and
Schneider (2003) with the meanings of the symbols
changed, for the Fisher information matrix under ap-
propriate regularity conditions for X :

(Gθ)i,j =〈∂i ln Pr(X; θ)∂j ln Pr(X; θ)〉Pr(X)

=
∑
X

∂i Pr(X; θ)∂j ln Pr(X; θ)

=
∑
X

∂i
(

Pr(X; θ)∂j ln Pr(X; θ)
)

−
∑
X

Pr(X; θ)∂i∂j ln Pr(X; θ)

=− 〈∂i∂j ln Pr(X; θ)〉Pr(X;θ) + ∂i∂j
∑
X

Pr(X; θ)

=− 〈∂i∂j ln Pr(X; θ)〉Pr(X;θ).

The first equality follows from the definition of Fisher
information matrix. The third equality follows from
integration by parts. The last equality is a result of the
sum of probabilities being constant, i.e.,

∑
X Pr(X) = 1.

The matrix 〈∂i ln Pr(X)∂j ln Pr(X)〉Pr(X;θ) is positive
semi-definite (Amari 1967) and the derivations resulting
from this expression inherit this property.

Proof Of Infinite Horizon Intra-Option
Matrix
Theorem (Infinite Horizon Intra-Option Matrix). Let
GTθ be the T -step finite horizon Fisher information ma-
trix and 〈Gθ〉µO(s,o) be the Fisher information matrix of
intra-option policies under a stationary distribution of
states, actions and options: πo(s, a, θ)µO(s, o). Then:(

lim
T→∞

1

T G
T
θ

)
i,j

= 〈Gθ〉µO(s,o)

Proof. GTθ is the T -step finite horizon Fisher informa-
tion matrix.(

lim
T→∞

1

T G
T
θ

)
i,j

= lim
T→∞

− 1

T 〈∂i∂j ln Pr(X)〉Pr(X)

= lim
T→∞

− 1

T
∑
X

Pr(X; θ)∂i
∂j Pr(X; θ)

Pr(X; θ)
(6)

The process represented by the path X is Marko-
vian, meaning Pr(St, Ot|St−1, Ot−1, St−2, Ot−2, ...) =
Pr(St, Ot|St−1, Ot−1). This leads to the following re-
sult for the likelihood probability, similar to the simple
form of the path probability metric presented by Bagnell
and Schneider (2003):

∂i Pr(X; θ)

Pr(X; θ)
=∂i ln Pr(X; θ)

=∂i ln ΠTt=1 Pr(St, Ot|St−1, Ot−1; θ)

=

T∑
t=1

∂i ln Pr(St, Ot|St−1, Ot−1; θ)

=

T∑
t=1

∂i Pr(St, Ot|St−1, Ot−1; θ)

Pr(St, Ot|St−1, Ot−1; θ)
. (7)

A reinforcement learning problem discounted with a dis-
count factor γ is equivalent to an undiscounted problem
where the MDP terminates with probability 1 − γ in
each state. We use this formulation of the problem to
derive the results as we go further. Applying the chain
rule to (6) and using µO(s, o) to denote the stationary
start state distribution we obtain:(

lim
t→∞

1

T Gθ
)
i,j

= lim
T→∞

− 1

T

〈∑
t

(∂i∂j Pr(St, Ot|St−1, Ot−1; θ)

Pr(St, Ot|St−1, Ot−1; θ)

− ∂i Pr(St, Ot|St−1, Ot−1; θ)∂j Pr(St, Ot|St−1, Ot−1; θ)

Pr(St, Ot|St−1, Ot−1; θ)2

)〉
Pr(X;θ)

=−
∑
o,s,a

µO(s, o)πO(s, a, θ)
(∂i∂jπo(s, a, θ)

πo(s, a, θ)

− ∂iπo(s, a, θ)∂jπo(s, a, θ)

πo(s, a, θ)2

)
, (8)

where µO(s, o) is the probability of (s, o) in the sta-
tionary distribution with the precondition (s0, o0). The
second equality above follows from the ergodic theorem
(Stein and Shakarchi 2009) and from the observation
that the terms in the numerator and the denominator
cancel out as follows:

∂i Pr(St, Ot|St−1, Ot−1, a; θ)

Pr(St, Ot|St−1, Ot−1, a; θ)

=
∂iπOt(St−1, a, θ)γ Pr(St|St−1, a) Pr(Ot|Ot−1, St)

πOt(St−1, a, θ)γ Pr(St|St−1, a) Pr(Ot|Ot−1, St)

=
∂iπOt(St−1, a, θ)

πOt(St−1, a, θ)
,

where Pr(Ot|Ot−1, St) = (1 − βOt−1
(St−1))1Ot−1=Ot +

βOt−1
(St)πO(Ot, St) is the probability of option Ot be-

ing active while exiting St given that the option Ot−1
is active when the agent enters St. Continuing the
derivation from (8):(

lim
T→∞

1

T
GTθ

)
i,j

=
∑
o,s,a

µO(s, o)πo(s, a, θ)
∂iπo(s, a, θ)∂jπo(s, a, θ)

πo(s, a, θ)2

−
∑
o,s

µO(s, o)
∑
a

∂i∂jπo(s, a, θ)

=
∑
o,s,a

µO(s, o)πo(s, a, θ)∂i lnπo(s, a, θ)∂j lnπo(s, a, θ)

=〈Gθ〉µO(s,o).

The second term in the first equality above vanishes
because

∑
a πo(s, a, θ) is constant.

Derivation Of Compatible Function
Approximation For Intra-Option Path
Manifold
Given the state-option-action advantage function, aU ,
and its approximator fπoη . For vector η and parameters



θ we have:

fπoη (s, a) = ηT
(
∂ ln(πo(s, a, θ))

∂θ

)
.

Let η̃ minimize the squared error ε(η, θ):

ε(η, θ) =
∑
s,o,a

µO(s, o)πo(s, a, θ)(f
πo
η (s, a)−aU (s, o, a))2,

therefore, it satisfies ∂ε/∂η = 0:∑
s,o,a

µO(s, o)πo(s, a, θ)
∂ lnπo(s, a, θ)

∂θ
(fπoη̃ (s, a)− aU (s, o, a)) = 0

∑
s,o,a

µO(s, o)πo(s, a, θ)
∂ lnπo(s, a, θ)

∂θ

∂ lnπo(s, a, θ)

∂θ

T

η̃

=
∑
s,o,a

µO(s, o)πo(s, a, θ)aU (s, o, a).

Combining this with the intra-option policy gradient
theorem (Bacon, Harb, and Precup 2017) we get:

∑
s,o,a

µO(s, o)πo(s, a, θ)
∂ lnπo(s, a, θ)

∂θ

∂ lnπo(s, a, θ)

∂θ

T

η̃

=
∂qπO (s0, o0)

∂θ
.

Finally, using Theorem 1 we obtain an estimate for the
natural gradient of the expected discounted return:

∇̃θqπO (s0, o0) = G−1θ
∂qπO (s0, o0)

∂θ
= η̃.

Proof Of Infinite Horizon State-Option
Transition Matrix

Theorem (Infinite Horizon State-Option Transition
Matrix). Let GTϑ be the T -step finite horizon Fisher
information matrix and µO(s′, o) is the stationary dis-
tribution of state-option pair s′, o. Then:(

lim
T→∞

1

T G
T
ϑ

)
i,j

= −(〈∂i lnβo(s
′, ϑ)∂j ln(1− βo(s′, ϑ) + βo(s

′, ϑ)πO(s′, o))〉µO(s′,o))i,j

Proof.(
lim
T→∞

1

T G
T
ϑ

)
i,j

= lim
T→∞

− 1

T 〈∂i∂j ln Pr(X ′;ϑ)〉Pr(X′;ϑ)

= lim
T→∞

− 1

T

〈∑
t

(∂i∂j Pr(St+1, Ot|St, Ot−1;ϑ)

Pr(St+1, Ot|St, Ot−1;ϑ)

− ∂i Pr(St+1, Ot|St, Ot−1;ϑ)∂j Pr(St+1, Ot|St, Ot−1;ϑ)

Pr(St+1, Ot|St, Ot−1;ϑ)2

)〉
Pr(X′;ϑ)

.

(9)

The second equality follows from the simplifi-
cation as in (7) which is based on the fact
that option transitions are Markovian, mean-
ing Pr(St, Ot−1|St−1, Ot−2, St−2, Ot−3, ...;ϑ) =
Pr(St, Ot−1|St−1, Ot−2;ϑ). Before moving forward we

first note that:

Pr(St+1, Ot|St, Ot−1;ϑ)

=
(
(1− βOt−1(St, ϑ))1Ot=Ot−1 + βOt−1(St, ϑ)πO(St, Ot)

)
×

(∑
a

πOt(St, a)γ Pr(St+1|St, a)

)
, (10)

where × denotes scalar multiplication and
Pr(St+1, Ot|St, Ot−1;ϑ) is the probability of the
agent transitioning to (St+1, Ot) given that option Ot−1
is active when the agent enters St. Expanding the first
part of the expression in (9):

∂i∂j Pr(St+1, Ot|St, Ot−1;ϑ)

Pr(St+1, Ot|St, Ot−1;ϑ)

=
∂i∂j

(
(1− βOt−1(St, ϑ))1Ot=Ot−1 + βOt−1(St, ϑ)πO(St, Ot)

)(
(1− βOt−1(St, ϑ))1Ot=Ot−1 + βOt−1(St, ϑ)πO(St, Ot)

)
=
∂i∂j Pr(Ot|St, Ot−1;ϑ)

Pr(Ot|St, Ot−1;ϑ)
. (11)

Where, Pr(Ot|St, Ot−1;ϑ) = (1 −
βOt−1

(St, ϑ))1Ot=Ot−1
+ βOt−1

(St, ϑ)πO(Ot|St) is
the probability that the agent transitions to option Ot
given that the option Ot−1 is active as it entered St.
Expanding the first term in (9) using (11) we obtain:

lim
T→∞

− 1

T
〈
∑
t

∂i∂j Pr(St+1, Ot|St, Ot−1;ϑ)

Pr(St+1, Ot|St, Ot−1;ϑ)
〉Pr(X′;ϑ)

= lim
T→∞

− 1

T
〈
∑
t

∂i∂j Pr(Ot|St, Ot−1;ϑ)

Pr(Ot|St, Ot−1;ϑ)
〉Pr(X′;ϑ)

=
∑
s′,o

µO(s′, o)
(

Pr(Ot 6= o|Ot−1 = o, St = s′)
∂i∂jβo(s

′, ϑ)

βo(s′, ϑ)

+ Pr(Ot = o|Ot−1 = o, St = s′)

∂i∂j(1− βo(s′, ϑ) + βo(s
′, ϑ)πO(s′, o))

(1− βo(s′, ϑ) + βo(s′, ϑ)πO(s′, o))

)
=
∑
s′,o

µO(s′, o)
(
βo(s

′, ϑ)(1− πO(s′, o))
∂i∂jβo(s

′, ϑ)

βo(s′, ϑ)

+
(
1− βo(s′, ϑ) + βo(s

′, ϑ)πO(s′, o)
)

(πO(s′, o)− 1)∂i∂jβo(s
′, ϑ)

(1− βo(s′, ϑ) + βo(s′, ϑ)πO(s′, o))

)
=
∑
s′,o

µO(s′, o)
(
1− πO(s′) + πO(s′)− 1

)
∂i∂jβo(s

′, ϑ) = 0.

(12)

The second equality above follows from the Ergodic
theorem (Stein and Shakarchi 2009). We define β′o as
the distribution of continuing option, where β′o(s, ϑ) (as
opposed to βo(s, o)) is the probability, parametrized by
ϑ, that the option o is active while the agent is exiting
s′ given that option o is active when it enters s′. It is
given by β′o(s

′, ϑ) = (1 − βo(s′, ϑ) + βo(s
′, ϑ)πO(s′, o)).

We now evaluate the second term in (9) and continue



the derivation:

lim
T→∞

1

T
〈
∑
t

∂i Pr(St+1, Ot|St, Ot−1;ϑ)∂j Pr(St+1, Ot|St, Ot−1;ϑ)

Pr(St+1, Ot|St, Ot−1;ϑ)2
〉Pr(X′;ϑ)

=
∑
s′,o

µO(s′, o)
(

Pr(Ot 6= o|Ot−1 = o, St = s′)
∂iβo(s

′, ϑ)∂jβo(s
′, ϑ)

βo(s′, ϑ)2

+ Pr(Ot = o|Ot−1 = o, St = s′)
∂iβ
′
o(s
′, ϑ)∂jβ

′
o(s
′, ϑ)

β′o(s′, ϑ)2

)

=
∑
s′,o

µO(s′, o)
(
βo(s

′, ϑ)(1− πO(s′, o))
∂iβo(s

′, ϑ)∂jβo(s
′, ϑ)

βo(s′, ϑ)2

+ β′o(s
′, ϑ)

(1− πO(s′, o))2∂iβo(s
′, ϑ)∂jβo(s

′, ϑ)

(1− βo(s′, ϑ) + βo(s′, ϑ)πO(s′, o))2

)
=
∑
s′,o

µO(s′, o)

(
(1− πO(s′, o))∂iβo(s

′, ϑ)∂jβo(s
′, ϑ)

βo(s′, ϑ) (1− βo(s′, ϑ) + βo(s′, ϑ)πO(s′, o))

)

=
∑
s′,o

−µO(s′, o)∂i lnβo(s
′, ϑ)∂j ln(1− βo(s′, ϑ) + βo(s

′, ϑ)πO(s′, o)).

The first equality follows from the ergodic theorem (Stein
and Shakarchi 2009) and (10). The third equality is a
result of arithmetic simplification. Combining this result
with (12) we obtain:

(Gϑ)i,j =−
∑
s′,o

µO(s′, o)
∂ lnβo(s

′, ϑ)

∂ϑ(
∂ ln(1− βo(s′, ϑ) + βo(s

′, ϑ)πO(s′, o))

∂ϑ

)T
.

Derivation Of Compatible Function
Approximation For Option Termination
Path Manifold

Given the advantage function of continued option, a′O,
and its compatible function approximation hβoϕ :

hβoϕ (s′) =

(
∂ ln(1− βo(s′, ϑ) + πO(s′, o)βo(s

′, ϑ)))

∂ϑ

)T
φβo(s′, o).

Note that Pr(Ot+1=o|Ot=o, St+1=s′;ϑ) = 1−βo(s′, ϑ)+
πO(s′, o)βo(s

′, ϑ) = β′o(s
′, ϑ), follows from the defini-

tions above. We defined the mean squared error ε(ϕ, ϑ)
associated with vector ϕ as:

ε(ϕ, ϑ) =
∑
s′,o

µO(s′, o)L(Ot+1=o|Ot=o, St+1=s′;ϑ)(hβoϕ (s′)− a′O(s′, o))2,

where L(Ot+1=o|Ot=o, St+1 = s′;ϑ) is the likelihood
ratio of option o being continued given that we enter

state s′ in o. It is defined as follows:

L(Ot+1=o|Ot=o, St+1 = s′;ϑ)

=
Pr(Ot+1=o|Ot=o, St+1 = s′;ϑ)

Pr(Ot+1 6=o|Ot=o, St+1 = s′;ϑ)

=
1− βo(s′, ϑ) + πO(s′, o)βo(s

′, ϑ)

βo(s′, ϑ)(1− πO(s′))

We also note the following result related to the likelihood
ratio, L, and the partial derivative of the probability of
continuing option, β′o, before proceeding:

L(Ot+1=o|Ot=o, St+1=s′;ϑ)
∂ lnβ′o(s

′, o)

∂ϑ

=
1− βo(s′, ϑ) + πO(s′, o)βo(s

′, ϑ)

βo(s′, o)(1− πO(s′, o))

∂ ln 1− βo(s′, ϑ) + πO(s′, o)βo(s
′, ϑ)

∂ϑ

=
1

βo(s′, o)(1− πO(s′, o))

∂(1− βo(s′, ϑ) + πO(s′, o)βo(s
′, ϑ))

∂ϑ

=− ∂βo(s
′, ϑ)

βo(s′, ϑ)∂ϑ
= −∂ lnβo(s

′, ϑ)

∂ϑ
. (13)

Let ϕ̃ be a local minima of the expected squared error,
ε(ϕ, ϑ). Therefore, it satisfies ∂ε/∂ϕ = 0. So,∑

s′,o

µO(s′, o)L(Ot+1=o|Ot=o, St+1=s′;ϑ)

× (φβo(s′, o))T (hβoϕ̃ (s′)− a′O(s′, o)) = 0

−
∑
s′,o

µO(s′, o)
∂ lnβo(s

′, ϑ)

∂ϑ
(hβoϕ̃ (s′)− a′O(s′, o)) = 0

∑
s′,o

µO(s′, o)
∂ lnβo(s

′, ϑ)

∂ϑ(
∂ ln(1− βo(s′, ϑ) + πO(s′, o)βo(s

′, ϑ))

∂ϑ

)T
ϕ̃ =

∑
s′,o

µO(s′, o)a′O(s′, o)
∂ lnβo(s

′, ϑ)

∂ϑ
.

The second line above follows from (13). To proceed
further we observe from:

u(o, s′) = (1− βo(s′))qπO (s′, o) + βo(s
′)vπO (s′).

we have a′O(s′, o) = u(o, s′) − qO(s′, o) =
−βo(s′)aO(s′, o). Combining this with the termi-
nation gradient theorem (Bacon, Harb, and Precup
2017) we obtain:∑
s′,o

µO(s′, o)
∂ lnβo(s

′, ϑ)

∂ϑ(
∂ ln(1− βo(s′, ϑ) + πO(s′, o)βo(s

′, ϑ))

∂ϑ

)T
ϕ̃ =

∂u(o0, s1)

∂ϑ
.

Using Theorem 2, the natural gradient of the expected
discounted return is:

∇̃ϑu(o0, s1) = G−1ϑ
∂u(o0, s1)

∂ϑ
= −ϕ̃.



Proof of Lemma 1

Lemma. Given intra-option policies, πo for all o ∈ O,
policy over options, πO, and terminations, βo for all
o ∈ O, then:

E[δUt |st, at, ot, πot , πO, βot ] = aU (st, ot, at).

Proof. For time step t we note that:

E[δUt |st, ot, at, πot , πO, βot ]
=E[rt + γû(ot, St+1)− q̂πO (st, ot)|st, ot, at, πot , πO, βot ]

=
∑
s

Pr(St+1=s|st, ot, at)R(st, at, s)

+ γE[û(ot, St+1)|st, ot, at, πot , πO, βot ]− qπO (st, ot).
(14)

Also,

E[û(ot, St+1)|st, ot, at, πot , πO, βot ]
=E [E[û(ot, St+1)|St+1, πO, ot, βot ]|st, ot, at, πot , πO, βot ]
=E[u(ot, St+1)|st, ot, at, πot , πO, βot ]

=
∑
s

Pr(St+1=s|st, ot, at)u(s, ot).

Combining this expression with (14) we obtain:

E[δUt |st, ot, πot , πO, βot ]

=
∑
s

Pr(St+1=s|st, ot, at)
(
R(st, a, s) + γu(ot, s)

)
− qO(st, ot)

=qU (st, ot, at)− qO(st, ot) = aU (st, ot, at).

Proof Of Lemma 2

Lemma. Under the precondition ot = ot−1 and given
intra-option policies, πo for all o ∈ O, policy over op-
tions, πO, and terminations, βo for all o ∈ O, then:

E[δOt |st, ot, ot=ot−1, πot , πO] = aO(st, ot−1).

Proof. For time step t we note that:

E[δt|st, ot, ot=ot−1, πot , πO] = E[rt + γv̂πO (St+1)− v̂πO (st)]

=
∑
s,o,a

Pr(St+1=s,Ot+1=o, at = a|st, ot)R(st, a, s)

+ E[v̂πO (St+1)|st, ot, ot=Ot−1, πot , πO]− vπO (st). (15)

Also,

E[v̂πO (St+1)|st, o, ot=Ot−1, πpt , πO]

=E[E[v̂πO (St+1)|St+1, ot, ot=Ot−1, πot , πO]

|st, ot, ot=Ot−1, πot , πO]

=E[v(St+1)|st, ot, ot=Ot−1, πot , πO]

=
∑
s,o,a

Pr(St+1=s,Ot+1=o, at = a|st, ot)qπO (s, o).

Combining this result with (15) we obtain:

E[δt|st, ot, ot=Ot−1, πot , πO]

=
∑
s,o,a

Pr(St+1=s,Ot+1=o, at = a|st, ot)

(R(st, a, s) + qπO (s, o))− vπO (st)

=q
πO

(st, ot)− vπO (st) = q
πO

(st, ot−1)− v
πO

(st)

=aO(st, ot−1).

Notice that the penultimate equality follows from our
assumption that ot−1 is the same as ot.

Learning The Parameters η And ϕ

The partial derivative ∂ε(η, θ)/∂η upon observing state-
action tuple (s, a) when option o is active:

∂ε(η, θ)

∂η
=

lnπo(s, a, θ)

∂θ

lnπo(s, a, θ)

∂θ

T

η

− aU (s, o, a)
∂ lnπo(s, a, θ)

∂θ
.

The partial derivative ∂ε(ϕ, ϑ)/∂ϕ upon entering the
state s′ when option o is active:

∂ε(ϕ, ϑ)

∂ϕ
=− ∂ lnβo(s

′, ϑ)

∂ϑ

∂ lnβ′o(s
′, ϑ)

∂ϑ

T

ϕ

− βo(s′, ϑ)aO(s′, o)
∂ lnβo(s

′)

∂ϑ
.

Note that the pair s′, o is shifted by one time step with s′

being one time step ahead of o. In the algorithm (INOC)
we take steps in direction of the derivatives, provided
above, to reduce the mean squared errors ε(η, θ) and
ε(ϕ, ϑ). We use consistent estimates of the advantage
functions aU and aO. We also maintain eligibility traces
of the second term in the expressions above (Morimura,
Uchibe, and Kenji 2005; Thomas 2014).

Termination Gradient Updates

As noted in the section introducing the algorithm, the
condition to get a consistent estimate of the advantage
function, aO, which is that the previous option is the
same as the current one, can limit the number of updates,
this is evident from Figure 5. For Seaquest we note that
the termination updates are sparser than the other three
games. This suggests why the performance of option
critic surpasses that of INOC for Seaquest.



(a) Asterisk (b) Seaquest (c) Zaxxon

Figure 5: The percentage of steps when an update is made to the termination policy for the Arcade Learning Environment,
for a single trial

Figure 6: Percentage of steps where an update is made to the terminations in Four Rooms, averaged over 350 runs


